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In everyday life we encounter a wide range of liquids
(e.g., water, custard, toothpaste) with distinctive optical
appearances and viscosities. Optical properties (e.g.,
color, translucency) are physically independent of
viscosity, but, based on experience with real liquids, we
may associate specific appearances (e.g., water, caramel)
with certain viscosities. Conversely, the visual system
may discount optical properties, enabling ‘‘viscosity
constancy’’ based primarily on the liquid’s shape and
motion. We investigated whether optical characteristics
affect the perception of viscosity and other properties of
liquids. We simulated pouring liquids with viscosities
ranging from water to molten glass and rendered them
with nine different optical characteristics. In Experiment
1, observers (a) adjusted a match stimulus until it had
the same perceived viscosity as a test stimulus with
different optical properties, and (b) rated six physical
properties of the test stimuli (runniness, shininess,
sliminess, stickiness, warmth, wetness). We tested
moving and static stimuli. In Experiment 2, observers
had to associate names with every liquid in the stimulus
set. We find that observers’ viscosity matches correlated
strongly with the true viscosities and that optical
properties had almost no effect. However, some ratings
of liquid properties did show substantial interactions
between viscosity and optical properties. Observers
associate liquid names primarily with optical cues,
although some materials are associated with a specific
viscosity or combination of viscosity and optics. These
results suggest viscosity is inferred primarily from shape
and motion cues but that optical characteristics
influence recognition of specific liquids and inference of
other physical properties.

Introduction

In everyday life we continuously interact with our
environment and the objects and materials it contains.

To be able to do this effectively we need to be able to
recognize familiar objects and materials, and infer their
physical properties by sight. This is essential to our
survival: It allows us to avoid eating rotting food,
breaking our ankle on a slippery curb, or burning our
hand on a hot pan. One highly challenging class of
materials is liquids and gels. It is quite impressive that
under typical conditions we can visually infer the
properties of liquids and interact with them effectively
despite their erratic nature and the large influence that
external forces hold over their shape and flow. We are
capable of distinguishing between water, toothpaste,
caramel, shampoo, mercury, and numerous other
liquids, and can even infer properties such as runniness,
sliminess, and stickiness without physically touching
them. This is important as it allows us to determine
their affordances (i.e., whether it can be used for
drinking, cleaning, gluing, etc.) and predict their likely
behavior before interacting with them.

Here, we sought to investigate the role of specific
visual cues in the perception of liquids and their
properties. In principle, there are several distinct
sources of information that observers could draw on to
recognize liquids and infer their physical characteristics
by sight. Broadly, we can divide these into two classes:
optical and mechanical. The main purpose of this study
was to determine the relative contributions—and
interactions between—these two broad classes of
information. Some studies approach material percep-
tion by asking how the visual system estimates a single
physical property of materials (e.g., glossiness, elastic-
ity), and seeking specific visual cues to that property. In
this study, by contrast, we look at a wide range of
liquid properties to identify whether there are any
stimulus or task conditions in which optical and
mechanical cues interact to affect the perception of
liquids.
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A liquid’s optical material appearance can tell us
many things about the liquid. For example, water is
colorless and transparent, whereas milk is translucent;
caramel and chocolate sauce have distinctive colors,
whereas molten solder is lustrous. Because specific
optical characteristics are associated with particular
liquids, we could use the optical appearance—or low-
level image correlates—to narrow down the range of
expected behaviors of the liquid. In addition to the
large amount of literature on the perception of surface
color (see Foster, 2011, for a review), a growing body of
research has investigated the estimation of optical
properties such as gloss (Beck & Prazdny, 1981;
Nishida & Shinya, 1998; Fleming, Dror, & Adelson,
2003; Motoyoshi, Nishida, Sharan, & Adelson, 2007;
Ho, Landy, & Maloney, 2008; Kim, Marlow, &
Anderson, 2012; see Chadwick & Kentridge, 2015, for a
recent review), translucency (Fleming, Jensen, &
Bülthoff, 2004; Fleming & Bülthoff, 2005; Xiao et al.,
2014), transparency (Fleming, Jäkel, & Maloney, 2011;
Faul & Ekroll, 2012; Schlüter & Faul, 2014) and surface
texture (Landy & Graham, 2004; Dong & Chantler,
2005; Emrith, Chantler, Green, Maloney, & Clarke,
2010; Liu, Dong, Cai, Qi, & Chantler, 2015). These
findings suggest that human observers are generally
very good at inferring optical material properties under
a wide range of conditions, and thus it is plausible that
observers could base judgments about liquids on such
cues.

In contrast, it is the mechanical properties of liquids
that determine the way they move and adopt particular
shapes in response to external forces. Probably the
most important mechanical parameter distinguishing
different liquids and gels is viscosity. For example,
water is very runny and therefore prone to splash and
spread out in puddles, whereas toothpaste is thick and
therefore tends to pile up into clumps when poured.
Thus, the visual system could use the distinctive shape
and motion caused by different viscosities to recognize
liquids and predict their behaviors. Previous research
has shown that we can infer viscosity from shape
(Paulun, Kawabe, Nishida, & Fleming, 2015) and
motion cues (Kawabe, Maruya, Fleming, & Nishida,
2015). Thus, again, it is plausible that human judg-
ments about liquids could rely on their mechanical
properties.

In this study we sought to determine the relative
contributions of optical and mechanical cues to the
perception of liquids and their properties. We ask the
following questions: Do observers recognize specific
liquids based primarily on optical properties—like
color, gloss, or translucency—or is viscosity also
important for determining a liquid’s identity? Are
judgments of viscosity biased by a liquid’s optical
properties? What about the perception of other
properties—like temperature, or stickiness—which

cannot be so easily inferred from the motion or shape
of the liquid? Such properties are potentially extremely
important for determining the affordances of materials,
but little is known about whether participants can infer
them through visual information.

A given material can change its optical and
mechanical properties depending on the prevailing
conditions: For example, the sugar concentration or
temperature of syrup affects its viscosity, whereas small
concentrations of dirt can make water cloudy without
affecting the way it flows or splashes. Thus, both
sources of information are imperfect cues to material
identity. Although it is commonly argued that shape
dominates other cues in object recognition (Biederman,
1987; Landau, Smith, & Jones, 1988), liquids are highly
mutable, so it is plausible that color and other optical
characteristics might be more diagnostic than shape. At
the same time, if shape and motion can be computed
accurately across a wide range of different optical
conditions (Todd, Norman, Koenderink, & Kappers,
1997; Todd, 2004; Nefs, Koenderink, & Kappers, 2006;
Khang, Koenderink, & Kappers, 2007; Vangorp,
Laurijssen, & Dutré, 2007; Doerschner, Yilmaz,
Kucukoglu, & Fleming, 2013; Dövencioğlu, Wijntjes,
Ben-Shahar, & Doerschner, 2015), then viscosity could
be estimated in a way that is unaffected by the surface
material appearance, enabling ‘‘viscosity constancy.’’
Thus, there are grounds for believing that optical and
mechanical properties may contribute to different
extents depending on the specific judgments that
observers are asked to make: whether it is estimating
viscosity; rating other properties of liquids; or identi-
fying (e.g., naming) specific materials, like paint,
toothpaste or molasses. To test the contributions of
optical and mechanical properties in the perception of
liquids and their properties, we therefore asked
participants to perform three tasks: (a) viscosity
matching; (b) subjective rating of liquid properties; and
(c) identifying which liquids correspond to verbal
labels.

For these experiments we used physically-based
computer simulations of a wide range of liquids. The
viscosities ranged from water to molten glass in six
approximately perceptually uniform steps (established
in an unpublished pilot experiment with the same
stimuli using maximum likelihood difference scaling).
Each liquid was rendered with nine different optical
characteristics. Although the computer simulations are
not absolutely perfect (careful observation reveals a few
visible artifacts), they are accurate enough to elicit vivid
and compelling impressions of distinct liquids, and
were computed at higher resolutions than used in
previous studies on the perception of liquids (Kawabe
et al., 2015; Paulun et al., 2015). Moreover, only by
using computer simulations is it possible to vary
mechanical and optical properties independently in a

Journal of Vision (2016) 16(15):12, 1–20 van Assen & Fleming 2

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/935912/ on 01/27/2017



parametric and perfectly controlled way. Only com-
puter graphics allow us to render identical three-
dimensional shapes with different optical properties,
enabling us to perfectly isolate the relative contribu-
tions of the two classes of cue.

In the experiments, observers were asked to adjust
the viscosity of a match stimulus along a high-
resolution viscosity scale (64 steps) until it appeared to
have the same physical properties as a test stimulus that
had different optical properties, in an asymmetric
matching task. Observers also rated six different
properties of the test stimuli, (runniness, shininess,
sliminess, stickiness, warmth, wetness). These two tasks
were performed with static and animated stimuli.
Finally, observers participated in a liquid naming
experiment to see how optical or mechanical properties
interact to determine the identity of familiar liquids
such as chocolate sauce, mouthwash, or milk.

Methods

In Experiment 1, observers were asked to perform
two tasks on each trial: an asymmetric viscosity-
matching task, followed by a liquid property-rating
task. The matching task showed a test stimulus with a
specific viscosity and optical appearance, and observers
could scroll through a standard set of liquids with fixed
optical appearance, but finely varying viscosities, to
select another stimulus that had the same apparent
viscosity as the test. The test and match stimuli were
sampled from different points in time in the animation
sequence to encourage observers to base their responses
on an internal representation of the physical properties
of the liquid, rather than simply by identifying the
stimulus with identical shape. Following the matching
task, participants were asked to perform a series of
ratings in which the same test stimulus was presented
together with rating sliders for six different liquid
properties: runniness, shininess, sliminess, stickiness,
warmth, and wetness.

Across participants, we varied (a) whether the
stimuli were single static frames or 1-s animation
sequences, and (b) whether the test or match stimuli
were taken from the earlier time point.

In Experiment 2, we measured how participants
assigned names to the stimuli based on their mechanical
and optical properties. First, one group of observers
were presented with all 54 stimuli (6 viscosities 3 9
optical appearances) and were asked to provide names
for each material. Then, a second group of subjects
filtered the word list to select the most descriptive and
plausible liquid names corresponding to the stimuli.
Finally, a third group of participants were provided
with each name in the list and were asked to identify all

of the stimuli from the 6 3 9 array that fit the
description. The observers were allowed to select
multiple liquids, allowing us to measure the extent to
which each verbal term designated a mechanical or
optical appearance (or both).

Stimuli

All stimuli used in this study can be downloaded
here: http://doi.org/10.5281/zenodo.154570.

Simulation

The stimuli were generated using RealFlow 2014 (v.
8.1.2.0192; Next Limit Technologies, Madrid, Spain).
This software enabled us to simulate and render liquids
up to the standards used by the visual effects (VFX)
industry. We used the ‘‘Hybrido’’ particle solver, which
makes it possible to specify the dynamic viscosity of the
liquids in real physical units (Pa�s). Hybrido is a FLIP
(fluid-implicit particle) solver using a hybrid grid and
particle technique to compute a numerical solution to
the Navier–Stokes equations describing viscous fluid
flow. All information for the fluid simulation is carried
by discrete particles, but the solution to the equations is
carried out on a grid. Once the grid solve is complete,
the particles gather the information required from the
grid to move forward in time to the next frame. The
fluid boundary is then derived from the position of the
particles by a meshing algorithm (when visible artifacts
occur, it is primarily due this step of the algorithm, not
the underling physics solver). For the match stimuli, a
set of 64 different viscosities was simulated with
logarithmically evenly placed steps from 0.001 Pa�s to
100 Pa�s (roughly corresponding to a range from water
to molten glass in approximately perceptually uniform
steps). The following equation can calculate the step
number back to viscosity:

l ¼ b � 10
d

s�1

� �n�1

ð1Þ

where l is the viscosity in Pa�s, b the starting value of
the scale, in our case 0.001, d the range of the scale in
decades, in our case 5 (10�3 to 102), s the amount of
steps of the scale (64), and n the step number of which
we want to calculate the viscosity. Liquid density was
held constant at one kilogram per liter. The number of
particles used varied between 2 and 4.5 million particles
depending on the viscosity, the only changing param-
eter in the simulation.

The simulated scene (Figure 1) consisted of a 1 m2

plane with a shallow wall around its perimeter and an
irregularly shaped solid object (height¼ 17.5 cm,
diameter ¼ 19 cm) that was rigidly attached to the
center of the plane. The liquid emerged from an
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‘‘emitter,’’ located approximately 30 cm above the
object (outside the frame of view). Gravity was the only
external force acting on the liquid, which had no initial
velocity on emerging from the emitter. The orifice of
the emitter had a rounded cross shape, yielding
distinctive ridges in the shape of the liquid, whose
durability and distinctness varied with viscosity.

The simulated animations had a total duration of 10
s (300 frames at 30 frames/s). For the experiments using
static stimuli, the test and match images consisted of
frames 90 and 150 from the animation (i.e., a 2-s time
difference) in the first condition, and 150 and 90 in the
second condition. The duration of the moving stimuli
was one second: frames 80–110 or frames 140–170.

For the target stimuli, six different viscosities were
selected, which were evenly spaced on the existing 64-
step scale. In this case steps (10, 19, 28, 37, 46, 55)
corresponding to dynamic viscosity values of (0.005,
0.027, 0.139, 0.72, 3.73, 19.3) Pa�s. Figure 2 shows an
overview of the static test stimuli. Video 1 shows the
full 10-s animations of the six different viscosities with
the same optical material.

Rendering

The render engine used to generate the final image
frames was Maxwell (v. 3.0.1.3; Next Limit Technol-
ogies). Nine different optical materials were developed
with diverse appearances, varying in their opaque,
transparent, and translucent properties. The match
stimulus set (consisting of 64 viscosities) was rendered
with a translucent ‘‘green goo’’ appearance. The test
stimuli consisted of approximations of the following
materials: caramel, metallic car paint, chocolate,
copper, a matte blue material, milk, water, and wine.
These materials were selected to represent a wide range

of different appearances that we could encounter in
liquid form, including both common (e.g., colorless
transparent) and unusual (e.g., matte blue) appear-
ances. Video 2 shows a loop of the 1-s animations used
during the experiment. It shows the nine different
optical materials with the same viscosity.

The images were rendered at an 8003 600 resolution
and the scene was lighted using a high dynamic range
light probe depicting a beach scene (from the Maxwell
Resource Library by Dosch Design, Marktheidenfeld,
Germany).

Observers

Matching and rating tasks

Forty-eight observers took part in the first experi-
ment with static and animated stimuli and the two
temporal orderings of test and match (i.e., four groups
with 12 observers per condition). The average observer
age was 25.3 (SD ¼ 4.45). Thirty-three observers were
female and 15 male.

Naming experiments

Forty-two German speakers participated in the three
experiments to match names with liquids. Ten observ-
ers took part in the free-naming (‘‘brainstorming’’)
session with static stimuli, and a further 10 observers
with animated stimuli. Six other observers took part in
the ‘‘filtering’’ session to select a subset of terms from
the brainstorming sessions. Finally, 16 observers
participated in the main experiment, in which partic-
ipants identified which stimuli corresponded with each
verbal item. The average age was 24.9 (SD ¼ 4.08), 27
were female, and 15 male.

All observers gave written consent prior to the
experiment and were paid for participating. All
observers reported having normal or corrected-to-
normal vision.

Procedure

Matching and rating tasks

All experiments were performed in accordance with
the Declaration of Helsinki, and prior approval was
obtained from the local ethics committee of the
University of Giessen.

The experiments were performed on an Apple Mac
Mini (Apple, Inc., Cupertino, CA) with a Dell U2412M
24-in. monitor (Dell, Inc., Round Rock, TX) using
factory default settings, gamma of 2.2, and a resolution
of 1920 3 1200 pixels. MATLAB 2015a (v.
8.5.0.197613) and the Psychtoolbox library (v. 3.0.11;
Brainard, 1997; Pelli, 1997) were used to run the
experiment, although Psychtoolbox was upgraded to

Figure 1. Dimensions of the simulated scene.
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version 3.0.12 over the period when different observers
participated.

Observers completed a short training session before
starting the experiment. This consisted of a single trial
to familiarize the participant with the interface for the
matching and rating tasks and to ensure that the
concepts on the six rating scales (liquidness, shininess,
sliminess, stickiness, temperature, wetness) were clearly
understood. Each trial consisted of the matching task
followed by all six ratings for a given test stimulus. For
the viscosity-matching task, the test stimulus was
presented on the left-hand side of the screen, and the

match stimulus was presented simultaneously on the
right-hand side of the screen. Observers had to scroll
through the viscosities of the match stimulus, with the
left and right arrow key on the keyboard. A ‘‘page-
turning’’ animation occurred with every button press,
revealing the new match stimulus to avoid apparent
motion between the different stimuli. Once the match
stimulus on the right appeared to have the same
physical properties as the target stimulus on the left, the
observer could confirm by pressing the ‘‘spacebar’’ to
proceed to the rating task for the same target stimulus.
Here, the observer had to indicate a subjective rating

Figure 2. (A) An example trial with the physically correct match stimulus. (B) Another trial with inverted time points. (C) An overview

of static stimuli with the nine different optical materials in the x-axis and the six different viscosities on the y-axis. The optical

materials are approximations of the following materials: green goo, caramel, metallic car paint, chocolate, copper, a matte blue

material, milk, water, wine.
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for each of the six properties by using the mouse to
move the randomly placed dots along the continuous
rating bars (with seven tick marks). When the observer
interacted with the dot on the rating bar, the dot would
turn green. When all six dots were green, the observer
could continue with the next trial by pressing the
spacebar. The observer had to complete a total of 108
trials (two blocks, each consisting of 9 materials 3 6
viscosities in random order). There were no time limits,
and the experiment took observers 45 to 90 min to
finish.

Naming experiments

For the naming experiments the same Apple Mac
Mini was used with the same Dell U2412M monitor as
in the other experiments. The ‘‘brainstorming’’ exper-
iment also used MATLAB and the Psychtoolbox
library. On each trial, one of the 54 test stimuli (9
optical materials 3 6 viscosities) was presented and
observers were instructed to ‘‘name the liquid you see in
the image.’’ There were four empty lines where
observers could enter names for the liquids. Only one
response per stimulus was required, although subjects
were encouraged to provide multiple verbal terms if
they applied. The brainstorming session resulted in a
combined word list of 2,156 entries, 1,262 for the static
stimuli and 894 for the moving stimuli. From this list,
10 names for each stimulus were selected, removing
many duplicate and less descriptive entries. The
resulting list of 540 words was used for the ‘‘filtering’’
experiment.

Different software was used for the ‘‘filtering’’ and
‘‘name matching’’ experiments because of better inter-
facing possibilities. In this case a Flask (v. 0.10.1) based
framework was used, compiled with Python 2.7.1. The
front end was written using HTML5 technology
displayed in Safari (v. 7.1.7). These browser-based
experiments were displayed in ‘‘presentation mode’’
and therefore showed no interface of the browser itself.
On each trial in the filtering experiment, an animated
liquid stimulus was presented along with a randomized
list of 10 names generated for that stimulus in the
previous brainstorming session, 54 lists in total.
Observers were asked to order the three most
appropriate and descriptive names to the top of the list.
This top three was weighted accordingly (three points
for first choice, two points for second choice, and one
point for third choice) during the selection process. All
scores above 90% of the highest score were selected
from the list. This means that if there was a close
second, both words were selected, which happened 11
out of 54 times. Duplicate answers were filtered out,
resulting in 49 words for the main name-matching
experiment.

The name-matching experiment used the same Flask
and browser based presentation system as the filtering
experiment. A new set of observers performed the task.
On each trial, they were presented with a liquid name
and a 6 3 9 grid containing static thumbnails of all
stimuli. The viscosities were ordered vertically and the
optical materials horizontally. When the observer
dragged the mouse over a stimulus in the stimuli grid, a
full-size animation for the corresponding stimulus
would appear. If the observer thought that a given
stimulus corresponded to the verbal item for the
current trial, they could select it with a simple checkbox
(subsequent unchecking was also possible but was
rarely used in practice). Multiple stimuli could be
selected for each name (i.e., each trial), but only one
answer was required. Finally, the observers were asked
to give a confidence rating for their response before
continuing to the next trial. This experiment had 49
trials in which the names from the list were linked to
the 54 different stimuli. There was no requirement for
all of the stimuli to receive a name.

All experiments were performed in German and have
been translated to English for presentation here.

Results

Raw data from all experiments can be downloaded
here: http://doi.org/10.5281/zenodo.154570.

For each of the matching and rating tasks, we tested
four different versions: the static and animated stimuli
with the test stimulus from an earlier or later time point
in the animation sequence than the match. (See
Methods for details.)

Viscosity-matching task

Figure 3 shows the results from the viscosity-
matching task for the four different conditions. The
first notable observation is that observers are generally
very good at matching viscosity: For all optical
materials, the matching function is approximately
linear with slope close to one. A linear regression can
explain the data extremely well with a slope close to one
for static stimuli: with the match from later than the
test, b¼ 0.91, R2¼ 0.98, p , 0.001, and for the reversed
time points, b¼ 1.02, R2¼ 0.97, p , 0.001. Especially
for the moving stimuli, observers matched the liquids
close to perfectly for the entire tested viscosity range, b
¼ 1.002, R2¼ 0.99, p , 0.001, and for the reversed time
points, b ¼ 0.92, R2 ¼ 0.99, p , 0.001.

There is, however, a systematic additive bias in the
responses, which is most pronounced for the static
stimuli. For the nonreversed condition (i.e., match
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stimulus from a later time point in the animation than
the test stimulus) stimuli, there is a slight overestima-
tion of viscosity. In other words, the liquids were
perceived as having the same viscosity when the match
stimulus was thicker than the test stimulus. This
presumably reflects an imperfect compensation for the
time offset between test and match, rather than a
systematic overestimation of viscosity. This interpreta-
tion is supported by the observation that when the time
points for test and match are swapped (i.e., test
stimulus from a later time point than the match
stimulus) the bias inverts. Evidently, in the absence of
strong visual cues to indicate the precise point in time,
it is difficult for observers to compensate for the
difference in time point between test and match. Put
differently, when asked to match viscosity in this task,
there is a bias toward selecting similar shapes. This
tends to lead to errors, because the shape of runnier
liquids evolves more rapidly than for thicker liquids.
Thus, the shape adopted by a given material at a
particular point in time is often somewhat better
approximated by a runnier fluid at an earlier point in
time or a thicker fluid at a later point in time.

To test more rigorously the hypothesis that partic-
ipants simply selected the most similar shape, we (a) ran
a control experiment and (b) developed a simple image
similarity metric based on the Euclidean distance. The
control experiment was exactly the same as the
asymmetric matching task in the main experiment,

except that instead of matching viscosity, 12 new
observers were instructed to match shape. The match
was only performed with static stimuli and all stimuli
were of the green goo material. The Euclidean
similarity metric used grayscale versions of the match
and test stimuli with the same optical material, which
were subtracted from each other. The mean pixel value
of the resulting image is compared with other match/
test stimuli combinations where the lowest mean value
is the best Euclidean match. This allows us to derive a
predicted match for each test stimulus, by identifying
which of all the match images has the smallest
Euclidean error (difference) to each test image. Figure 4
plots these predictions in comparison with observers’
data for the static stimuli. Both results further support
the interpretation that the additive bias is due to
observers tending to match shape, while only partially
compensating for differences in time point. The
Euclidean predictions for runny liquids diverge more
because of faster evolving shapes resulting in bigger
differences between the two time points. Observers
seem to partially compensate for this by not picking the
most similar shape (in Euclidean terms). The hypoth-
esis is further supported by the shape matches made in
the control experiment. Performance was practically
identical when observers were asked to match based on
shape rather than viscosity, suggesting that viscosity
judgements are very similar to shape similarity judg-
ments. Our interpretation of this finding is that it is not

Figure 3. Mean results of the matching task for the four different conditions, with static and moving stimuli, and reversed time points

between match (M) and test (T) stimulus. Error envelopes represent standard error of the mean. Time points for the Moving

conditions refer to a range of 30 frames, in this case frames 80–110 and 140–170.
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very helpful to think of ‘‘viscosity perception’’ as a fixed
process of creating a single, unified internal estimate of
the physical parameter of the liquid, which can then be
accessed psychophysically. Instead, depending on the
specific task (e.g., matching viscosity, rating runniness)
and stimulus context (i.e., other stimuli in the
experiment), participants latch onto different cues in a
highly flexible way (here focusing mainly on shape
similarity between test and match stimuli).

Returning to the results of the main experiment,
another notable aspect is the negligible differences
between the nine optical materials, especially for the
moving stimuli. This is confirmed by the linear
regression analysis performed earlier where linear
models based on viscosity explain 97% to 98% of the
variance for the static stimuli. This means that at most
2% to 3% of the variance can be accounted for by the
optical material differences and noise. With moving
stimuli, this is even down to 1%. Thus, optical material
appearance barely influences viscosity judgments, i.e.,
observers have very good viscosity invariance across
changes in optical appearance, at least when reliable
motion and or shape cues are present.

Rating liquid properties

Observers were asked to rate runniness, shininess,
sliminess, stickiness, wetness, and warmth. Figure 5
shows the scores observers gave for each material at the
six different test viscosities. To save space, only graphs
from the moving stimuli variation are shown. The
graphs for the other variations, which are broadly
similar, can be found in the Appendix.

There is a clear difference between properties that
are driven mainly by mechanical cues (i.e., cues based
on shape and motion), and optical cues, based on
optical material appearance. As expected, runniness is
clearly scored primarily on the viscosity of the stimulus
and optical material appearance has almost no effect. A
linear model based on the viscosity explains 98% of the
variance, leaving 2% unexplained by the optical
material appearance and noise.

Conversely, shininess is driven primarily by optical
cues. As expected, the matte blue material is seen as the
least shiny, and the lustrous copper-metal is viewed as
the most shiny. There is almost no effect of viscosity on
perceived shininess: Most materials have a certain
shininess independent of their viscosity, as indicated by
the flat curves. The only exception seems to be the milk-
like material. We believe this effect is caused by the
high degree of subsurface scattering for this material.
When the material’s shape is thin, there is little
scattering, so the body color appears darker, and the
specular reflections have higher contrast. By contrast,
when the material has more volume, scattering makes
the body color whiter, reducing the contrast of
highlights (Pellacini, Ferweda, & Greenberg, 2000).
From the third viscosity step on, we see a notable
decline in perceived shininess, shown at point ‘‘A’’ of
Figure 5. From this viscosity on, the material gathers
into thicker, more voluminous clumps, creating a more
diffuse, matte appearance. Thus the interaction is
probably not due to the perceived viscosity per se, but
rather simply due to the shape.

Sliminess is a property that depends on mechanical
and optical cues. There are certain optical materials like
green goo that appear slimier than others. At the same
time, there is also a certain (intermediate) viscosity

Figure 4. Mean viscosity match over all nine materials for time conditions with static stimuli in comparison with the shape match task

(left) and predictions based on match stimulus with the most similar shape to each given test (using a simple Euclidean shape metric;

right). Note that the solid data series depict identical data in both panels; only the predictions (dashed lines) differ.
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range that observers associate with sliminess. It is
interesting to see that there appears to be little
interaction between optical and mechanical cues. The
different materials are shifted from each other verti-
cally, but follow roughly the same curve.

Stickiness is mainly driven by optical cues. For
example, the matte blue material does not look sticky
at all whereas a wine-like material appears to be
stickiest.

Wetness decreases with increasing viscosity. The
matte blue material appears substantially less wet than
all other materials. This is consistent with previous
findings that specularity is associated with wetness
(Sawayama & Nishida, 2015).

Somewhat surprisingly, the warmth ratings do not
show a substantial effect of viscosity. One might expect
a runny metal or chocolate colored material to appear
warmer than a more viscous variant. The instructions
clearly stated that participants should rate the expected
temperature as it would feel were the participant to put
their finger in the liquid. However, participants did not
seem to consider runniness as a cue to increasing
temperature. It is possible that a forced-choice para-
digm might reveal a tendency to associate runnier
liquids with higher temperatures, but, if present, the
association is not strong enough to show up in this
experiment. Another notable result is that there is a
clear bimodal distribution of warm and cold materials.
This appears to be influenced by the ‘‘warmth’’ of the

color of the liquid, where red, brown, and orange
materials are warm and green, blue and transparent
materials are cold. It is unclear whether this was simply
a tacit association, or whether participants deliberately
chose to base their warmth judgments on color, despite
the explicit instructions to attend to the expected
temperature.

Model

As noted, most differences among the nine optical
materials appear to be shifts in scores on the y-axis.
This suggests that although optical and mechanical
cues contribute to the perceived properties of liquids,
the interactions between the two classes of informa-
tion are generally relatively weak. We quantified this
observation by fitting models to each of the nine
materials for the six liquid properties shown in Figure
5. For each of the rated properties, we took the mean
of all optical materials and fitted a linear and
quadratic model to this. The best AIC (Akaike
information criterion) score of the mean-based model
defines the type of model for the individual materials.
AIC is a statistical model fit measure based on the
likelihood function and number of predictors. To test
the hypothesis that most of the data can be explained
by only shifting a fitted model on the y-axis, we took
the slope of the mean-based model and fit only the

Figure 5. Mean rating scores for the six different liquid properties with moving stimuli. Error envelopes represent standard error of

the mean. Point A (Shininess plot) indicates the point at which the liquid gathers into voluminous clumps, affecting the perceived

shininess for the milk-like material.
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intercept (‘‘fixed slope model’’). We compared this
with a fit where each material had an independently
fitted slope (‘‘free slope model’’). The results of the
average AIC values from the nine different materials
are shown in Figure 6. A lower value means a better fit
of the model to the original data. Since AIC weighs in
the complexity of the model and our fixed slope
models are less complex, we can see if a decrease in
complexity compensates for the decrease in goodness
of fit. In cases where the orange bar is shorter in
Figure 6, our fixed slope model outperformed the free
slope model. This means that in these cases, the model
without interaction between optical and mechanical
cues explains the data better. Another measure, AICc,
or the second-order corrected Aikaike information
criterion assigns greater penalty for extra model
parameters and is mostly applied in cases when the
sample size (n) is small compared with the number of
parameters (k) where n/k , 40 (Burnham & Ander-
son, 2002), which holds in this case. In all six cases,
AICc prefers our fixed slope model. Overall, based on
these results, it is safe to say that interactions between

optical and mechanical cues are relatively limited.
Shininess, with the outlier at point A of Figure 5,
seems to be the reason why our fixed slope model does
not perform well, where in the other negative two
cases the differences between the two models are much
smaller.

Principle component analysis

Another way of representing the rating data, to gain
insights into the relative contributions of mechanical
and optical cues, is using a principal component
analysis (PCA). Each stimulus can be represented as a
point in a six-dimensional feature space, where each
feature represents one of the six subjective rating scales.
PCA allows us to summarize the relationships between
the different stimuli as well as the relationships between
the different liquid properties. Figure 7 plots the data
from the experiment with moving stimuli with standard

Figure 6. Overview of average AIC and AICc values from the nine different materials for each liquid property. A lower value means that

the model is a better fit. The free slope model fits the intercept and the slope. The fixed slope model only fits the intercept with a

predetermined slope. The Q and L show if it is a linear or quadratic based model. The AIC criterion takes the amount of parameters

used into account for an optimal tradeoff between goodness of fit and complexity of the model. AICc is similar to AIC but assigns

greater penalty for extra model parameters.

Figure 7. (A) Samples in the PCA space (first two components), color-coded by optical material. Vectors represent projections of the

different liquid property dimensions. (B) The same data points color-coded by viscosity instead of optical properties.
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time ordering, in the space spanned by the first two
principal components.

Caution is required in interpreting these plots, as the
different ratings are not necessarily measured on a
consistent scale. Although participants were asked to
rate each property on a 0–10 range, they may have
used very different internal scales for mapping the
perceived differences between different liquids onto
each scale. Thus, for example, a step of 0.1 on the
Runniness scale is not commensurable with a step of
0.1 on the Warmth scale. This means that we cannot
draw strong conclusions about the metric distances
between different samples in the PCA space. Never-
theless, it is interesting to observe the orderly
arrangement of the samples in the feature-space, which
are systematically organized by optical and mechanical
properties.

The different dimensions plotted in Figure 7A
reveal that runniness and shininess are approximately
perpendicular to each other. As noted already,
runniness is mainly driven by mechanical cues
(viscosity), and shininess mainly by optical cues
(material appearance). That runniness and shininess
are perpendicular to one another in the PCA space
confirms that we tend to separate optical and
mechanical cues when judging liquid properties. In
Figure 7A, the different optical materials are system-
atically organized along the shininess axis, where
Figure 7B shows that the different viscosities clearly
follow the runniness axis. It is also notable that for the
range of viscosities and optical appearances we used
here, and for the particular set of liquid properties we
asked participants to rate, optical and mechanical cues
play approximately equal roles. The spread of samples
in terms of their optical properties is roughly the same
as the spread in terms of the viscosities (although we
cannot directly compare magnitudes across features, it
is nevertheless interesting that across all features there
is a roughly even spread of influence of optical and
mechanical properties).

Naming experiment

Figure 8 shows the results of the name-matching task
in which observers were asked to select one or more
stimuli for each of the 49 different liquid names that
were generated in the ‘‘brainstorming’’ and ‘‘filtering’’
experiments.

For every participant and for each verbal item, we
have a complete 6 3 9 binary array indicating whether
the corresponding image was deemed to match the
verbal item, along with a scalar confidence rating.
Pooling across subjects gives us an integer array per
verbal item, containing the number of votes each
stimulus received across observers (Figure 8B). For

display purposes, we can reorder the array into a 54-
vector for each verbal item. Example response vectors
for several liquid names are shown in Figure 8A. (A
complete list is presented in the Appendix.)

For most stimuli, the participants’ responses were
sparse: In other words, each name corresponded with
only a small subset of the 54 candidate images (mean¼
2.8 items, SD¼ 3.4). Moreover, there was a high degree
of consistency between participants in the set of stimuli
that were selected for each name. This can be measured
by the kurtosis of the distribution of responses over all
possible words and stimuli, where 16 votes is the
maximum score (i.e., one vote per participant). The
kurtosis is 17.74, making the distribution highly
leptokurtic, meaning that in many cases multiple
participants matched a stimulus with a word or none
did (Figure 8C). If it is 16 it means that for one word all
16 observers chose a specific stimulus, which happened
two times. Participants were very confident matching
stimuli to words, with an average confidence interval of
7.3 on a 0–10 scale. Together, these findings suggest
that observers associate liquid names with specific
appearances, and thus that visual appearance is quite
diagnostic of liquid identity for a wide range of
common liquids.

To gain a more thorough insight into the extent to
which liquid identities are associated with specific
ranges of optical and mechanical properties, we
computed two indices to measure how selective
participants were in terms of the optical and mechan-
ical properties of the stimuli they chose. We define the
‘‘optical focus’’ of the responses as the extent to which
the responses to a given verbal item were restricted to a
particular optical material, specifically, the kurtosis of
the sum votes for each optical material. Analogously,
we define the ‘‘mechanical focus’’ as the extent to which
the responses to a given item were restricted to a
particular range of viscosity values, specifically the
kurtosis of the sum votes for each viscosity (Figure 8B).
Note that these two quantities are independent and not
mutually exclusive, so that an item could have a low
degree of focus for both properties (indicating that the
verbal term is not very specific, e.g., ‘‘liquefied dough’’);
a high focus for one property but not the other
(indicating that it specifies a particular optical appear-
ance, but not a specific viscosity, or vice versa, e.g.,
‘‘chocolate pudding’’ or ‘‘gum’’); or a high focus for
both properties (indicating that the name specifies a
particular combination of optical appearance and
viscosity, e.g., ‘‘grape juice’’). In Figure 8A, example
items with low focus are colored gray, items with high
optical focus only are indicated in blue, items with high
mechanical focus only are indicated in red, and items
with high focus for both optical and mechanical
properties are indicated in green. Note that due to the
reordering of the array into a vector, periodic responses

Journal of Vision (2016) 16(15):12, 1–20 van Assen & Fleming 11

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/935912/ on 01/27/2017



every nine steps indicate that observers selected based
on the optical material (i.e., high optical focus), and an
adjacent sequence of nine high values indicates that
observers selected based on viscosity (i.e., high me-
chanical focus).

These ‘‘focus’’ indices allow us to summarize the
relative importance of optical and mechanical proper-
ties for all 49 liquid names in a single two-dimensional
(2D) space, as shown in Figure 8D. (A complete
overview is presented in the Appendix.) The x-axis
shows optical focus and the y-axis mechanical focus.
The intensity of the name dots represents the mean
confidence ratings observers gave for each item. Note

that items with lower focus values also tended to
receive lower confidence ratings. Thus, it could be that
items with low focus values could simply be liquids for
which none of the images corresponded well with the
name. Thus, we should be cautious about concluding
that some liquid names do not specify very precise
appearances: It could simply be that the stimulus set
did not contain appropriate images.

Most names are associated primarily with the
liquid’s optical appearance, as indicated by the blue
region. Only four of the 49 names were associated with
one specific viscosity but no specific optical appearance
(red region). There are a few liquid names that specify a

Figure 8. (A) Raw data of a sample of the 49 words. The 54 columns represent the 54 stimuli where the first nine optical materials of

the runniest liquid are on the left. Periodic behavior (blue) suggests optical focus, sequential behavior (red) suggests mechanical

focus, green is a combination of both, and gray are more noisy names. (B) Raw data of the ‘‘Molten gold’’ word. Six rows for six

viscosities and nine columns for nine materials. The kurtosis of the sum of each row and column is used to calculate the optical focus

(blue) and mechanical focus (red). (C) The distribution of votes per stimulus per trial with a maximum of 16 votes for the 16

participants. (D) The optical and mechanical focus for each word plotted in a single 2D space. The red area has high mechanical focus,

the green area both high mechanical and optical focus, and the blue area high optical focus. The intensity of the dots represents the

confidence interval given by observers.
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particular combination of optical and mechanical
properties e.g., water that needs to be runny and
transparent. These results suggest that although we are
very well able to perceive different viscosities, optical
material appearance seems to be more a more
distinctive feature than viscosity, and is therefore
assigned more linguistic value by observers. Alterna-
tively, it could be that a given class of liquid is generally
prone to vary more in viscosity than in optical
appearance, relative to the range of values that we used
(e.g., ‘‘chocolate sauce’’ comes in lots of different
thicknesses, but they are all brown).

Discussion

There are at least two routes by which optical
properties could affect the perception of liquids: (a) via
learned associations, or (b) by aiding (or hindering) the
perception of shape and motion cues that are the basis
for estimates of liquid properties. The former is specific
to liquid perception, whereas the latter reflects general
processes of midlevel vision. Our findings suggest that
the extent to which observers rely on optical or
mechanical information about liquids and their prop-
erties depends on the context and task. When asked to
make visual matches of viscosity, shape and motion
cues dominate, and optical material appearance barely
influences perceived viscosity. This suggests that
learned associations and effects of shading on shape
and motion estimates only weakly affect viscosity
matches, at least when motion and shape cues to
viscosity are strong. Although it is surely possible to
find combinations of lighting and reflectance that do
adversely affect shape and motion cues to viscosity (as
occurred to some extent with the ‘‘milk’’ material in
Experiment 1), under typical viewing conditions, shape
and motion processing is robust enough to derive
viscosity-diagnostic information from the richly struc-
tured patterns that pouring liquids generate on the
retina. In contrast to the viscosity-matching task, the
rating task showed that subjective ratings of different
liquid properties are based on mechanical cues, optical
cues, or a combination of both, depending on the
specific property. Moreover, the pattern of responses
suggests that processing of mechanical and optical cues
is independent because of very limited interactions
between the two: Most rating patterns could be well
explained by a simple linear combination of the two
kinds of information. The liquid naming experiment
suggests that in most cases, we tend to assign names to
liquids based mainly on their optical material appear-
ance. This could mean that the optical material
appearance is more diagnostic of the liquid (or more

invariant) than its mechanical properties, at least for
the range of appearances that we considered.

The finding that optical properties have only a weak
effect on viscosity judgments makes intuitive sense
because the physical processes determining viscosity are
independent of those that affect the way the fluid
scatters, reflects, and absorbs light. In principle, any
given optical appearance could co-occur with any
possible viscosity, and therefore optical characteristics
do not provide a direct visual cue to viscosity.
However, we reasoned that if a specific liquid with
familiar viscosity properties is identified (via optical
cues), this could bias or interact with viscosity
estimates. Our findings suggest, however, that if this
occurs, it is to a very small extent, at least when strong
motion and or shape cues to viscosity are present.
Especially with moving stimuli, observers show close-
to-perfect performance at matching viscosity across
variations in optical materials. This suggests that when
observers are judging a mechanical intrinsic property of
the liquid like viscosity, they rely primarily on shape
and motion cues. As mentioned before with other
scenes where mechanical cues are less dominant, the
influence of optical cues might increase. We do think
that with our stimuli, designed to study viscosity,
mechanical cues will keep their dominant role, and
therefore we will continue our studies investigating the
perception of viscosity without taking potential influ-
ences of optical characteristics into account.

However, this is not to say that there is no role of
optical properties in the perception of liquids and their
properties more generally. In the ratings and the
naming task, some properties and liquids were associ-
ated with specific optical cues. However, our results
provide an initial indication that optical and mechan-
ical cues do not interact much with each other. This
impression is amplified by the results of the second task
in which observers had to rate six liquid properties:
runniness, shininess, sliminess, stickiness, wetness, and
warmth. In most cases the various properties were
determined primarily by either optical or mechanical
cues on their own, e.g., ‘‘runniness’’ decreases with
increasing viscosity, but is unaffected by the optical
properties of the liquids, whereas ‘‘shininess’’ varies as a
function of the specular reflectance of the material, and
is barely influenced by viscosity (apart from the
translucent milk-like material discussed already). There
are, however, some properties that are affected by
optical and mechanical characteristics. For example,
mechanical and optical cues play a role in the
perception of ‘‘sliminess:’’ green goo looks significantly
slimier than copper-like liquids, even when the shape
and motion are identical, but there is also a certain
viscosity range that is considered to be slimiest (neither
too thick nor too runny—like Goldilocks’ porridge).
Nevertheless, even though both types of cue influence
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perceived sliminess, the interaction between the two is
limited. All scores followed approximately the same
curve, merely shifting additively up and down as a
function of the optical characteristics (see Figure 5).
This tends to suggest that the visual system treats the
two kinds of information as distinct cues, which are
then combined according to a simple ‘‘weak fusion’’
process (Landy, Maloney, Johnston, & Young, 1995)
to arrive at a subjective rating of ‘‘sliminess.’’ Alter-
natively, it is possible that the influence of the optical
and mechanical cues on the ratings proceeds via top-
down associations. Specifically, it could be that the
image cues serve to identify a specific liquid (e.g., green
goo), whose cross-modal properties (e.g., sliminess) are
recalled from memory. It is difficult to design
experiments that tease apart the relative role of bottom-
up and top-down contributions to ratings of high level
properties of materials (Fleming, Wiebel, & Gegen-
furtner, 2013).

Some caution is required in generalizing the con-
clusions of the matching and rating experiments. Here,
we used a somewhat restricted range of stimuli
consisting of one single scene of pouring liquids. It is
almost certainly the case that other stimuli—such as
those shown in Figure 9—can yield more extreme
percepts of many of the features we tested here. For
example, none of the stimuli in our experiment
appeared as ‘‘sticky’’ as the example shown in Figure
9A. Additional cues to stickiness presumably include
the distinctive strands that span surfaces that have been
stuck together and pulled apart, or in terms of motion,
prolonged adhesion to other surfaces in the scene.

Likewise, the molten metal in Figure 9B clearly conveys
a stronger sense of high temperature than any of the
stimuli in our experiments, presumably due to the
visible glow, and other cues such as smoke or steam. If
motion and shape cues to materials are extremely weak
(e.g., in the limit a stationary liquid in a container),
then optical cues will presumably carry a relatively
stronger weight in determining perceived viscosity or
other liquid properties. Nevertheless, we believe that
the broader conclusion that different properties of
liquids combine shape, motion and optical cues with
different weights will withstand further scrutiny. This is
for the simple reason that, although optical properties
are almost always an ambiguous (i.e., unreliable)
predictor of viscosity, shape and motion cues tend to be
highly diagnostic of viscosity as soon as the liquid
flows.

In our study, liquid names are mainly dominated by
optical material appearance. The names considered
descriptive of liquids in most cases span a range of
possible viscosities. For example: the name ‘‘chocolate’’
is assigned to all viscosities as long as the optical
material is chocolate. This presumably reflects the fact
that different concentrations and temperatures of
chocolate yield a wide range of viscosities, but changes
to the surface color and optical appearance are less
common. However, there are exceptions to the
dominance of optical qualities. The term ‘‘water’’
specifies a specific colorless transparent appearance and
a specific (runny) viscosity. ‘‘Plastic’’ needs to look
viscous but can have a wide range of different optical
materials. Thus, specific recognizable liquids can be

Figure 9. (A) Example of a sticky material. (B) Example of a hot liquid. Images used under CC0 Public Domain license.
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associated with optical and mechanical properties. It
seems that under many conditions, the optical material
appearance (primarily color, gloss, and translucency
parameters) are sufficiently distinct to specify many
common liquids. Where the optical material appear-
ance is not sufficiently specific for communicating a
particular physical state, speakers may use additional
terms that are specific to a liquid’s mechanical aspects,
such as sauce, paste, mouse, syrup, or cream. Our
observers did not report any problem with using
multiple terms to specify appearances—including ma-
terials in viscosity states that they have not personally
experienced before. We suggest that this approach to
linguistic labeling of fluids—with basic level terms for
optical appearance and qualifiers for viscosity—may
reflect how we prioritize the visual cues that are used to
identify liquids in general (i.e., optical appearance may
dominate mechanical under many circumstances).

Keywords: material appearance, viscosity, liquid,
texture, recognition
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Appendix

Stimuli and experimental data

All stimuli and experimental data used in this study
are available for download from: http://doi.org/10.
5281/zenodo.154570.

Journal of Vision (2016) 16(15):12, 1–20 van Assen & Fleming 16

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/935912/ on 01/27/2017

http://jov.arvojournals.org/article.aspx?articleid=2434045&resultClick=1
https://www.ncbi.nlm.nih.gov/pubmed/25476707
http://jov.arvojournals.org/article.aspx?articleid=2213071
https://www.ncbi.nlm.nih.gov/pubmed/24627457
http://jov.arvojournals.org/article.aspx?articleid=2121604
http://doi.org/10.5281/zenodo.154570
http://doi.org/10.5281/zenodo.154570


Remaining rating results for all four variations

Figure A1. Showing the liquid property rating results with static stimuli. Error envelopes represent standard error of the mean.

Figure A2. Showing the liquid property rating results with static stimuli of the reversed condition. Error envelopes represent standard

error of the mean.
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Figure A3. Showing the liquid property rating results with moving stimuli of the reversed condition. Error envelopes represent

standard error of the mean.
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Full data set of the naming experiment

Figure A4. Showing the raw data of the name matching experiment.
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Figure A5. Showing the data of Figure A4 in 2D space. The intensity of the dots represents the confidence ratings. The names with

high mechanical focus are in the red area, the names with high optical focus are in the blue area, and the names with high optical and

mechanical focus are in the green area.
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