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SUMMARY

Perceptual constancy—identifying surfaces and
objects across large image changes—remains an
important challenge for visual neuroscience [1–8].
Liquids are particularly challenging because they
respond to external forces in complex, highly vari-
able ways, presenting an enormous range of images
to the visual system. To achieve constancy, the brain
must perform a causal inference [9–11] that disentan-
gles the liquid’s viscosity from external factors—like
gravity and object interactions—that also affect the
liquid’s behavior. Here, we tested whether the visual
system estimates viscosity using ‘‘midlevel’’ features
[12–14] that respondmore to viscosity than other fac-
tors. Observers reported the perceived viscosity of
simulated liquids ranging from water to molten glass
exhibiting diverse behaviors (e.g., pouring, stirring).
A separate group of observers rated the same anima-
tions for 20 midlevel 3D shape and motion features.
Applying factor analysis to the feature ratings reveals
that a weighted combination of four underlying
factors (distribution, irregularity, rectilinearity, and
dynamics) predicted perceived viscosity very well
across this wide range of contexts (R2 = 0.93). Inter-
estingly, observers unknowingly ordered their midle-
vel judgments according to the one common factor
across contexts: variation in viscosity. Principal
component analysis reveals that across the features,
the first component lines up almost perfectly with the
viscosity (R2 = 0.96). Our findings demonstrate that
the visual system achieves constancy by represent-
ing stimuli in a multidimensional feature space—
based on complementary, midlevel features—which
successfully cluster very different stimuli together
and tease similar stimuli apart, so that viscosity can
be read out easily.

RESULTS AND DISCUSSION

If the estimation of viscosity proceeds hierarchically—through a

weighted combination of midlevel features describing dynamic

3D shape properties—it should be possible to identify such fea-
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tures and use them to predict perceived viscosity across varia-

tions in other scene variables. To test this hypothesis, we simu-

lated liquids with a wide range of viscosities interacting with a

variety of different scenes (seeMovies S1 and S2). In Experiment

1 we made detailed measurements of viscosity perception in a

simple scene in which each liquid poured vertically onto an

object on a plane (Figure 1A). The 10 s animations, depicting

liquids with 32 different viscosities, were divided into six

(1.67 s) time periods. On each trial, observers viewed eight

videos of liquids with different viscosities from the same time

period and rated the perceived viscosity by adjusting sliders

for each video. Results are shown in Figure 1B. Consistent

with previous work [14–16], we find that observers are excellent

at judging viscosity: the regression between their ratings and

physical truth was R2 = 0.96, F(1,190) = 4,941, p < 0.001. There

was also amild tendency to see later time periods as runnier. The

range of responses across observers is shown in Figure 1E.

Comparingviscositiesacross liquids is relativelystraightforward

if all other scene factors are heldconstant. Thedeeper challenge is

to achieve constancy—i.e., generalization across contexts. To

investigate constancy, in Experiment 2 we created a series of

scenes in which liquids underwent qualitatively different behav-

iors, such as oozing through holes, being stirred in a container,

or interacting with a waterwheel (Figure 2A; Movie S1). Seven vis-

cosities were simulated, and observers again rated viscosity, this

time for the entire 10 s of each animation (see STAR Methods for

details). We found a significant decline in viscosity constancy

across scenes, as indicated by the different rates at which the

columns in Figure 2B change from light to dark. Nevertheless, ob-

servers were still verywell able to differentiate and order the seven

simulated viscosities across qualitatively different behaviors,

yielding a regression between the ratings and physical truth of

R2 = 0.92, F(1,54) = 656.7, p < 0.001. The range of responses

across different individuals is shown in Figure 2E.

Next, we sought to identify a set of midlevel shape and motion

cues that predict viscosity perception. Rather than identifying

potential cues through physical analysis, we took a data-driven

approach in which we selected a broad set of hypotheses

through phenomenology, which could then be tested, rejected,

and refined through experimentation. To do this, we viewed

the ‘‘pouring liquids’’ stimulus set and brainstormed features

that (1) described aspects of the stimuli’s 3D shape and motion,

(2) varied across stimuli, and (3) could be described to partici-

pants verbally. We also asked four naive observers to brainstorm

a list of features describing the liquids. Although the terms they

identified were not identical to ours, they were judged by another

group of observers to overlap substantially with our list,
ors. Published by Elsevier Ltd.
commons.org/licenses/by/4.0/).
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Figure 1. Experiment 1 Model Predictions

(A) Eight equally spaced viscosity stimuli spanning the full range of viscosities (frame 90 of 300).

(B) Mean viscosity ratings for all videos in Experiment 1.

(C) Predicted viscosity for same stimuli, based on the four-factor model.

(D) Scatterplot comparing model predictions to mean responses across observers and repetitions. Darker greens indicate later time periods.

(E) Root mean square errors relative to ground truth viscosities and standard deviation of responses across repetitions for each observer (dots); red dot indicates

bootstrapped estimate of random performance based on 1,000 random draws.

See also Figure S1, Movies S1 and S2, and Table S1.
suggesting that we had identified a reasonable set of features to

test. Importantly, we view the initial feature list as a superset of

potential cues—i.e., hypotheses—which we sought to cull

through subsequent analyses.

To do this, in Experiments 3 and 4, two new groups of

observers viewed the same videos as in Experiments 1 and 2,

but instead of rating viscosity, they rated the 20 features (e.g.,

compactness, elongation, pulsing, clumping; see Table S1 for

a complete list with specific instructions). None of the features

referred to the liquids’ material properties. Instead, they targeted

the stimulus’s 3D shape and motion characteristics to test the

hypothesis that viscosity is inferred from specific weighted com-

binations of such cues.

Results for three of these features with pouring liquids (Exper-

iment 3) are shown in Figure 3A (see Figure S1 for all 20 features).

Unlike viscosity ratings, the feature judgments often varied in

complex, non-monotonic ways as a function of viscosity and

time period. This means the different features provide potentially

complementary cues about the liquid. Although some individual
features predict viscosity perception in some scenes, few fea-

tures predict all the data well on their own. Instead, the brain

likely combines multiple cues to achieve more robust estimates

of viscosity. There were strong correlations between features

(Figure S3A), suggesting a smaller number of true underlying

factors describing the liquids’ shape and motion.

To test this, we performed a factor analysis (Figure 3). A Horn

test [17] revealed four basic factors (each a weighted combina-

tion of the feature ratings; Figure S3): (1) distribution—describing

the extent the liquid clumped together versus spread out; (2)

irregularity—describing how complex and detailed its shape

was; (3) rectilinearity—capturing how straight and angular the

liquid appeared; and (4) dynamics—describing its motion prop-

erties. When a new group of nine observers were asked to judge

these factors directly, the responses correlated significantly

(mean R2 = 0.52) with the factors derived from the feature ratings

on the same stimuli. The process of applying factor analysis

allowed us to narrow down the broader list of 20 features to

four more refined and specific hypotheses.
Current Biology 28, 452–458, February 5, 2018 453
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Figure 2. Experiment 2 Model Predictions

(A) Eight different scenes simulated with the same viscosity of 0.167 Pa$s.

(B) Mean viscosity ratings for all scenes in Experiment 2.

(C) Predicted viscosity for same stimuli, based on the four-factor model.

(D) Scatterplot comparing model predictions to mean responses across participants and repetitions (from [B] and [C]).

(E) Root mean square errors relative to ground truth viscosities and standard deviation of responses across repetitions for each observer (dots); red dot indicates

bootstrapped estimate of random performance based on 1,000 random draws.

See also Figure S2, Movies S1 and S2, and Table S1.
To test whether these factors could predict viscosity percep-

tion, we performed a multiple linear regression, using the factors

derived from Experiment 3 to predict the viscosity ratings data

from Experiment 1. The model predicts the viscosity data

extremely well, R2 = 0.97, F(4,187) = 1,386, p < 0.001, far better

than randompredictors (a bootstrapping analysis with 1,000 rep-

etitions revealed 185 predictors would be required to achieve

equivalent non-significant performance). This indicates that a

simple weighted linear combination of dynamic 3D shape fea-

tures is sufficient to explain perceived viscosity. Note, again,

that the combination of factor analysis and regression allows

us to reduce our initial hypotheses and to quantify the relative

roles of individual cues. Of course, on its own, our finding does

not strictly imply that the estimation of midlevel features is prior

to the inference of viscosity. It is logically possible that observers

derived their feature judgments from the perceived viscosity.
454 Current Biology 28, 452–458, February 5, 2018
However, we suggest that the detailed—often non-mono-

tonic—feature ratings makes this unlikely. On grounds of parsi-

mony, it seems more likely that viscosity is inferred from the

midlevel features than vice versa.

The key challenge of viscosity perception is to achieve con-

stancy across dramatic changes in the liquid’s behavior. To

test howwell themodel predicts viscosity constancy, we applied

the factor loadings and regression weights derived solely from

the ‘‘pouring’’ scene (Experiments 1 and 3) to the feature ratings

from Experiment 4 to measure how well the model predicted

viscosity perception in the other eight scenes (Experiment 2).

Results are shown in Figure 2D. Despite having no new training

data or additional free parameters, the model generalizes to

the eight new scenes remarkably well, (R2 = 0.88, F(1,54) =

391.4, p < 0.001). These results confirm that a relatively small

number of midlevel stimulus characteristics—related to how
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Figure 3. Model Creation

(A) Example ratings for three features from Experiment 3.

(B) Factor analysis weights for the 20 perceptual features into the corresponding four factors for which they have the largest weights.

(C) Multiple linear regression combines the four factors into a viscosity prediction for the data from Experiment 1.

(D) Comparison of threemeasurements-based models and the perceptual-factor model (red line). Regressions were performed on eight-scene stimulus set. Free

and fixed across contexts refers to one set of weights for all scenes versus a separate set of weights for each scene. Free across contexts shows the lowest and

the highest scene performance where the thick line is the mean across scenes.

See also Figure S4.
fast they move, how much they spread out or clump together,

how irregular they are, and how rectilinear they are—determine

the perception of viscosity across a very wide range of contexts.

To test the robustness of these conclusions, we also ran the

factor analysis and regression in reverse, using the data from

the eight scenes (Experiments 2 and 4) to build a model for pre-

dicting perceived viscosity. As before, this model predicts its

training data very well (R2 = 0.96, F(4,51) = 294, p < 0.001).

When used to predict the viscosity ratings from the pouring

scene (Experiment 1), this model also generalizes well (R2 =

0.77, F(1,190) = 637, p < 0.001; again with no free parameters),

although not as well as the original model, which is unsurprising

given that only about a third as much training data was available

(56 rather than 192 data points). To quantify the similarities be-

tween the two models, we computed representational dissimi-

larity matrices (RDM, [18]) describing the differences between

stimuli in their respective factor spaces (Figure S3C). The

RDMs correlated highly for both Experiment 3 (pouring scenes:

R2 = 0.65, F(1,18334) = 33,470, p < 0.001) and Experiment 4

(eight scenes: R2 = 0.58, F(1,1538) = 2,090, p < 0.001), suggest-

ing that the models learned similar representations of the stimuli

from the feature ratings. Together these findings further suggest

that representing stimuli using multiple complementary factors

enables viscosity constancy.

Of course, some caution is required in interpreting these re-

sults. Although the range of liquid behavior we tested was broad,

there may be some conditions where other, untested features

could predict viscosity perception even better. Indeed, while
these factors account for viscosity perception once a stimulus

is identified as a liquid, it is highly unlikely they suffice for deter-

mining whether the stimulus is a liquid in the first place. Many

non-liquid forms could appear as distributed, irregular, recti-

linear, and dynamic as one of our stimuli without appearing to

be a liquid of a specific viscosity. Thus, although these factors

are important for viscosity estimation, they do not explain all

aspects of liquid perception across all possible conditions.

Nevertheless, the broader conclusion is that the visual system

can achieve a high degree of constancy by representing liquids

in a feature space incorporating multiple, complementary mea-

surements. A similar approach has been proposed to account

for errors of gloss perception [19, 20]; our results suggest that

such an approach predicts both successes and failures of con-

stancy in material perception more generally.

Why do these features work? The key challenge of constancy

is that movies of the same liquid in different scenes are very

different from one another in the image domain, while movies

of different liquids in the same scene are muchmore similar (Fig-

ure 4A). Somehow the visual systemmust remap the representa-

tional space to organize the stimuli by their viscosity.We find that

this is exactly what the midlevel features achieve. To investigate

this, we performed principal component analysis (PCA) on the

data from the second stimulus set (eight scenes). Figure 4A de-

picts each stimulus in the pixel similarity space by performing

PCA on the rescaled grayscale pixel data of the entire video

sequence. This represents the raw input to the visual system.

The ellipses show standard errors around themean for the seven
Current Biology 28, 452–458, February 5, 2018 455
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viscosities. The substantial overlap of the ellipses indicates that

raw retinal image similarities provide a poor basis for viscosity

perception, demonstrating the extent of the challenge confront-

ing the visual system. In contrast, Figure 4B shows the PCA

space of the features ratings and reveals a clear and systematic

ordering of the stimuli by viscosity. It is important to emphasize

that observers were simply instructed to rate different shape

and motion features—viscosity was never mentioned. Despite

this, the first principal component of the ratings correlates

strongly with the actual viscosity (R2 = 0.96, F(1,54) = 1,212,

p < 0.001). This demonstrates that despite massive physical

variations across scenes, observers unknowingly arranged the

stimuli according to the one common factor across these

scenes: the viscosity. This impressive ability strongly suggests

that the visual system achieves constancy by identifying features

that transform the perceptual space to extract invariant material

properties and negate the effects of other scene variables.

An important current debate in material perception research is

the extent to which 2D image quantities are sufficient for material

judgments [21, 22] or whether 3D surface structure plays a

crucial role [23–25]. To provide some perspective on this, we

developed a model using four shape metrics computed directly

from the liquids’ 3D meshes (see Figure S4 and STAR Methods),

which we compared against two previous models, based on 2D

optical flow [15] and 2D shape [14] (Figure 3D). The 2D models

generalize poorly across our stimuli (Kawabe et al.: R2 = 0.23;

Paulun et al.: R2 = 0.29). Only the novel 3D model predicts vis-

cosity perception moderately well with fixed weights across

scenes (R2 = 0.81). Unsurprisingly, when we perform separate

regressions for each scene independently (freeweights), all three

measurement models perform somewhat better. However, the

results suggest that 3D representations contribute to the robust-

ness of viscosity perception beyond simple 2D image measure-

ments. How might 3D information be used? Simply representing

local 3D structure at every surface point would be insufficient.

Some degree of perceptual organization is required to group

and summarize raw 3D measurements into quantities that relate
456 Current Biology 28, 452–458, February 5, 2018
to viscosity. We suggest that the midlevel

perceptual factors pool and organize local

3D estimates to create robust viscosity

cues.
Together, these results indicate that despite the extremely

complex physics underlying fluid flow, we can predict viscosity

perception using a small number of quite simple midlevel cues.

A fascinating open question is how the visual system identifies

which stimuli are liquids in the first place and then extracts infor-

mation from features that robustly generalize across an even

wider range of contexts than tested here (e.g., when spatial scale

or the liquid’s density also vary). In the long run, models of vis-

cosity perception should be combined with a ‘‘front-end’’ that

allows predicting viscosity perception directly from image

sequences, presumably via 3D estimates. Such a model should

also seek to predict the effects of lighting and the liquid’s optical

properties on perceived viscosity, although these effects are

generally small [16].

One approach to liquid detection and feature selection would

be through sophisticated—potentially innate [26–30]—physics-

like internal models that capture the typical behavior of fluids.

For example, Battaglia and colleagues suggest [31] that the

visual system predicts liquids’ future states through simulations

based on internal models. They show that humans far outper-

form simple heuristics at predicting where and how liquids

flow. Such ‘‘intuitive physics’’ approaches could potentially

account for the successes of viscosity constancy we observe

in our experiments: an internal model could be fit to liquids in a

wide variety of different poses and contexts. Nevertheless, a

challenge for any type of model is to predict the partial failures

of viscosity constancy that we observe (e.g., the differences

between the columns in Figure 2B).

An alternative approachwould be to learn features from obser-

vation using large quantities of training data (e.g., learning of

optimal speed or disparity encoding from natural scene data

[32, 33]). Given the recent success of convolutional neural net-

works (CNNs) in predicting visual object recognition and its

neural correlates [34–37], the visual system could likely learn to

recognize liquids—and features diagnostic of viscosity—from

sufficient training data. An interesting topic for future investiga-

tion is whether similar features emerge for both liquid detection



and viscosity estimation. Indeed, it would be fascinating to test

whether CNNs arrive at similar features to the ones we identify

here. Nevertheless, as such algorithms acquire their features

through supervised training, a major challenge for their use as

models of human perception is to explain where the training

labels come from during human learning. We might associate

certain ranges of viscositywith different liquids but are not explic-

itly taught a fine viscosity scale that relates across materials, and

yet, aswe find here, we eventually become surprisingly good and

precise at identifying them across a wide range of conditions.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Groups of twelve observers rated perceived viscosity in the first two experiments. In Experiments 3 and 4, where shape features were

rated, two separate groups were formed. Each group rated only ten of the twenty shape features. In Experiment 3, twelve observers

participated in each group, and in Experiment 4, ten observers participated in each group. In total, over all four experiments, 68

observers participated. The average observer age was 25.0 (SD = 4.82). 45 observers were female and 23 male. In the control

experiments a total of 21 observers participated (4 in the brainstorming experiment, 8 in the semantic (word-list) matching experi-

ment, and 9 in the factor rating experiment). The average age was 24.3 (SD = 3.89), 14 observers were female and 7 male. All

observers gave written consent prior to the experiment and were paid for participating. All observers reported having normal or

corrected-to-normal vision. Experiments were conducted in accordance with the Declaration of Helsinki and prior approval was

obtained from the local ethics committee of Giessen University.

METHOD DETAILS

Stimuli
Two stimulus sets were used in the four experiments. Set 1 consisted of a pouring liquid scene that was simulated with 32 viscosity

steps. Each 10 s long animation was divided into six time periods of 1.67 s each for Experiments 1 and 3. This resulted in a total of 192

stimuli (32 viscosities3 6 time periods). Set 2 consisted of eight different scenes each simulatedwith seven viscosity steps. The dura-

tion of each stimulus in Set 2 was the full 10 s because (1) In Experiment 1 we found that time had very little effect on perceived

viscosity, and (2) due to the very wide range of speeds across scenes, there were long time periods for some scenes with viscous

liquids, where the liquid had not yet entered the scene, which obviously would have made viscosity estimation impossible. Thus, Set

2 contained 56 stimuli (7 viscosities 3 8 different scenes).

Simulation

Stimuli were generated using RealFlow 2014/2015 (V. 8.1.2.0192/V. 9.1.2.0193; NextLimit Technologies, Madrid, Spain). The pouring

liquid scene (Experiments 1 and 3) consisted of 32 different viscosities ranging from 0.001 to 80.30 Pa$s. In Experiments 2 and 4,

seven different viscosities were tested ranging from 0.004 Pa$s to 7.74 Pa$s in eight different scenes. Viscosity values were selected

from a logarithmically spaced scale of 64-steps between 0.001 Pa$s and 100 Pa$s (equivalent from water to molten glass). RealFlow

provides multiple particle solvers; in this case the ‘‘Hybrido’’ particle solver was used, making it possible to specify the dynamic

viscosity of the liquids in real physical units (Pa$s). Hybrido is a FLIP (Fluid-Implicit Particle) solver using a hybrid grid and particle

technique to compute a numerical solution to the Navier-Stokes equations describing viscous fluid flow [40]. Discrete particles carry

all information for the fluid simulation, but the solution to the equations is carried out on a grid. Once the grid solve is complete, the
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particles gather the information required from the grid tomove forward in time to the next frame. Finally, ameshing algorithm uses the

particles to calculate the fluid boundary.When visible artifacts occur, it is mostly due to themesh calculation, not the underlying phys-

ics solver. The density of the liquids was held constant at one kilogram per liter. The number of particles varied across scenes, with a

maximum of roughly 5 million particles. All scenes were simulated in a space of roughly one cubic meter. Gravity was the main

external force acting on the liquid, however in some cases an additional noise force field was used to achieve better scene-liquid

interaction. The simulated animations had a total duration of ten seconds (300 frames at 30fps).

Rendering

The render engine used to generate the final image frames was Maxwell (V. 3.0.1.3; NextLimit Technologies, Madrid, Spain). Images

were rendered at 800 3 600 resolution and the scene was lighted using an HDR light probe depicting a beach scene (from the

Maxwell Resource Library by Dosch Design). The liquid of the pouring scene (Experiments 1 and 3) was rendered with a translucent

material. The liquid in all other scenes was of a green opaquematerial. Previous research has shown that optical material appearance

of liquids barely influences viscosity judgements [16].

Procedure
Experiment 1 and 2: Rating viscosity

The experiments were performed on a Dell T3500 with a Dell U2412M 24-inch monitor using factory default settings, gamma of 2.2

and a resolution of 19203 1200 pixels. MATLAB 2015a (v. 8.5.0.197613) and the Psychtoolbox library (v. 3.0.12) [38, 39] were used to

run the experiments. Observers completed a short training session before starting the experiment. The training consisted of a single

trial in which the maxima and minima of the stimuli were presented and the observer could get acquainted with the interface. For

Experiments 2 and 4, all eight scenes were shown as well. During each trial, eight stimuli were shown with a rating bar transparently

projected over each stimulus (Movie S2). There was no time limit and once all rating bars were set the observer could continue to the

next trial. Corrections during the trial were possible and the observer was free to choose in which order the stimuli were rated. Each

stimulus was repeated four times during the experiment but the position and combinations with other stimuli were chosen randomly

for each trial.

Experiment 3 and 4: Rating shape features

The setupwas the same as in Experiments 1 and 2. Experiments 3 and 4were divided into two groups of observers, each rating ten of

the twenty shape features. The stimuli were organized by viscosity on the screen. This was done to make it easier to rate the shape

features. In the case of Experiment 3, 32 stimuli of the same time period were shown simultaneously. For Experiment 4, seven stimuli

of one scene were shown. There were no repetitions in Experiment 3 and in Experiment 4 every trial was shown twice, in random

order. Each shape feature name was presented in the top left of the screen and an additional description was provided for clarity.

All experiments were performed in German and have been translated to English for presentation here, see table S1 for a full list of

shape features and descriptions.

Control experiment 1: Brainstorming new word list

We asked four observers to brainstorm ‘shape features’ while viewing videos of the pouring liquids (full 10 s duration). There was a

short training stage in which we explained the concept of shape features with examples using cars and plants. We carefully used

examples that would not overlap with features in liquids. Individually, each observer wrote down asmany shape features as possible,

after which the four observers were instructed to work together to pick the most descriptive twenty features. This closely resembles

the way we selected the features ourselves.

Control experiment 2: Semantic matching of word lists

In this experiment, eight observers were asked to rate the similarity between our original word list (A) and new words generated in

control experiment 1 (B). The videos of the pouring liquids were shown to provide some context. For each word in one list, the

observer had to select similar words from the other word list. Observers were not required to choose similar words if there were

none, and a maximum of three similar words for each item was allowed. The similarity of each of the matching words was then rated

as ‘high similarity’, ‘intermediate similarity’, and ‘little similarity’. This experiment was performed in both directions, so wordlist A was

matched with wordlist B and vice versa. This enabled us to judge the similarity between the two word lists.

Control experiment 3: Factor ratings

In this control experiment we asked nine observers to rate the four factors (Distribution, Irregularity, Rectilinearity and Dynamics)

directly, instead of the 20 features. Apart from this, the experimental procedure was the identical to the main Experiment 3 in which

the 20 features were rated.

Measurement models
2D Motion flow model

Kawabe et al. [15] showed that the mean speed of optical flow is highly predictive of perceived viscosity. To evaluate whether motion

cues are able to predict viscosity in our stimuli, we used the same iterated pyramidal Lucas-Kanade method [41] to calculate optical

flow. We found that flow speed correlated poorly with perceived viscosity in the pouring liquids scene (R2 = 0.01, F(1,190) = 2.297,
e2 Current Biology 28, 452–458.e1–e4, February 5, 2018



p = 0.13). There are at least two possible reasons for this: first, the liquid was translucent, which could hinder optical flow compu-

tations; second, the second half of the movie does not contain much motion across the entire viscosity range. Optical flow for the

other eight different scenes and opaque liquids also did not perform very well (R2 = 0.23, F(1,54) = 16.24, p < .01). Only when we

perform regression analysis for each specific scene do we see that for some specific scenes optical flow is a good predictor, with

an average of R2 = 0.75, and minima an maxima between R2 = 0.53 and R2 = 0.97. The large variations in performance of the motion

predictor suggest that the visual system likely uses other cues in addition to speed to infer viscosity.

2D Image statistics model

Paulun et al. [14] found that twenty simple 2D shape statistics derived from the liquids’ silhouette predict perceived viscosity surpris-

ingly well. The statistics include measurements of shape, area, curvature, spatial distribution and perimeter, among others. We

applied the same measurements to our stimuli, having excluded frames where there was not enough liquid (fewer than 300 pixels,

i.e, < 0.06% of image) and areas with only one-pixel width (to avoid errors in the contour measurements). Paulun et al. did not apply a

regression but simply took the mean of the normalized measurements. Without fitting they found the model predicted perception in

their stimuli extremely well (r = 0.99, p < 0.001). We applied the model to the second stimulus set (eight scenes) and found a much

poorer fit (R2 = 0.29, F(1,54) = 22.27, p < 0.001). Like Paulun et al. we used only a single predictor, the mean of all normalized mea-

surements across our eight scenes. Performing a regression for each scene independently yield highly variable performance, ranging

from R2 = 0.01 to R2 = 0.99. This shows that in some cases simple 2D shape measurements are sufficient to predict viscosity very

well. However such cues are not flexible or invariant enough to achieve similar performance across contexts. Generalizing the model

to use all 20 features as separate predictors in a regression (rather than the mean across measurements) yields R2 = 0.80, F(20,35) =

7.19, p < 0.001, compared to R2 = 0.81, F(4,51) = 55.88, p < 0.001 for our 3D model with only four predictors. The difference in

performance is likely due to the fact that the four 3D measurements generalize better across scenes and contain less covariance

than the twenty 2D measurements.

3D Shape measurements model

One advantage of computer-simulated liquids is the generation of detailed 3Dmeshes of the liquids. From these, we derived four 3D

measurements (Figure S4) that were loosely inspired by some of the perceptual features in the regression model. Specifically,

(1) mean absolute curvature weighted by the shape index [42], which emphasizes angular features, (2) the sum of absolute vertical

normal coordinates, which captures the tendency of liquids to form horizontal planes as they spread out, (3) the vertical position of the

center of mass, which tends to be higher when the liquid piles up, and (4) total absolute curvature of the liquid, which tends to be large

when the surface has many local convolutions. As the pouring liquids sequence is divided into six periods, we compensated for large

differences in mesh size over time by normalizing the median value of each feature over the different time periods. This was not

necessary for the stimuli used in Experiment 2 and 4 where the entire 10 s time sequence was shown and we could simply take

the average measurement value over 300 frames. We did apply normalization of each measurement across the scenes. To compare

performance with the other models we applied a multiple linear regression on the second stimulus set with eight scenes. We find the

3D model performs much better than the other two (R2 = 0.81, F(4,54) = 55.88, p < 0.001). When we apply the regression separately

for each scene the mean is R2 = 0.98 across scenes. It is important to note however, that this performance is achieved even though

the mesh measurements do not correlate with the perceived feature ratings across contexts (mean R2 = 0.04). This means that

although a linear combination of themeshmeasurements can explain perceived viscosity relatively well, there is no direct correspon-

dence between these measurements and the features that our observers judged.

QUANTIFICATION AND STATISTICAL ANALYSIS

All experiments were performed in MATLAB using Psychtoolbox (v. 3.0.12) [38, 39]. All analyses were performed in R. The code is

publicly available and can be downloaded here: http://doi.org/10.5281/zenodo.1136202. All dependencies of external packages

used in R are clearly documented in the code. No observers were excluded from the analysis.

Factor analysis
We performed a maximum likelihood factor analysis using the R ‘psych’ package. To determine how many factors there were in the

dataset, we applied Horn’s parallel analysis [17]. We applied the Harmanmethod to calculate the scores, applying the loadings to the

actual data.

Representational Similarity Analysis (RSA/RDMs)
For a comprehensive description of Representational Similarity Analysis, we refer to [18]. The representational dissimilarity matrices

(RDMs) in figure S3C were calculated using the Euclidean distances between observations in the 4D factor space, with each dimen-

sion representing one of the factors. The linear regression used to quantify similarity between RDMs was performed on the lower

triangles of the two matrices (i.e., diagonal and upper triangle excluded from analysis).

Principal Component Analysis
To perform PCAon the raw image similarity space (Figure 4A), we halved the images to 4003 300 pixels, and converted the images to

grayscale using the following conversion values (0.2989 * R + 0.5870 * G + 0.1140 * B). The resulting dataset contains 36 million
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dimensions for each of the 56 stimuli (i.e., over 2 billion observations in total). We include this PCA data as a separate, comma

separated file.

DATA AND SOFTWARE AVAILABILITY

All data, analysis code, and stimuli are available on Zenodo at http://doi.org/10.5281/zenodo.1136202. Any questions should be

directed to the Lead Contact (mail@janjaap.info).
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